Search through plan space

- Planning as a search through plan space
 - nodes represent partially specified plans
 - edges denote plan-refinement operations
- Facilitates thinking about alternative
 - representations of partially specified plans
 - plan-refinement operators
- Partial order plan representations
 - a plan is represented as a partially ordered sequence
 - planning algorithm practices least commitment

Partial order plans

- A plan is a three tuple $\langle A, O, L \rangle$
 - A is the set of actions in the plan
 - initially we consider only ground actions
 - O is the set of ordering constraints among the actions
 - O must be consistent
 - L is the set of causal links

Causal links

- Records dependencies between actions
- A causal link consists of
 - the producer A_p
 - the consumer A_c
 - the proposition Q
- A causal link states that
 - action A_p has an effect Q
 - action A_c has a precondition Q
 - -Q will be made true for A_c by A_p

Threats

- An action A_t is a *threat* to a causal link $A_p \xrightarrow{Q} A_c$ in a plan $\langle A, O, L \rangle$ if
 - $-O \quad \{A_p < A_t < A_c\}$ is consistent
 - $-A_t$ has $\neg Q$ as an effect

Resolving a threat

- Threats are resolved by adding additional ordering constraints
- Promotion
 - add the constraint $A_c < A_t$
- Demotion
 - add the constraint $A_t < A_p$

Representing null plans

Introduce two pseudo-actions

- *Start*: effects are the initial state and preconditions are empty
- End: preconditions are the goals and effects are empty
- Ordering constraint: *Start < End*

$$on A B \quad on B C$$
 End

Partial order planning

```
algorithm POP(\langle A, O, L \rangle, Agenda)
   if Agenda is empty then return \langle A, O, L \rangle
   Remove some \langle Q, A_{need} \rangle from Agenda
   A_{add} = choose an action that can be ordered before A_{add}
       and has effect Q (an existing or newly instantiated action)
   if no such A_{add} exists then return "no plan"
   Add A_{add} \xrightarrow{Q} A_{need} to L and A_{add} < A_{need} to O
   if A_{add} is new then
       A = A {A_{add}}, add preconds(A_{add}) to Agenda and Start < A_{add} < End to O
   for every causal link A_p \xrightarrow{R} A_c threatened by some A_t do
       choose either to demote A_t or to promote A_t consistently
       if neither ordering is consistent then return "no plan"
   endfor
   POP(\langle A, O, L \rangle, Agenda)
end POP
```

Example

Start

on CA clear B clear C on A Table on B Table

on A B on B C End

A complete plan

• Figure 10 from Weld 1994

Lifting

- Use *least-commitment* in operator instantiation
- An effect can support a precondition if the two *unify*
 - add co-designation constraints resulting from the most general unifier of the effect and precondition
 - instantiate an operator by creating a copy with a fresh set of variables
- Operator preconditions can be non-codesignation constraints
- Threats need be resolved only when they are forced
 - means that a plan is complete only when all variables are instantiated
 - ensure by requiring that variables in preconditions and effects are the same and initial state has no variables

Lifted POP

```
algorithm LPOP(\langle A, O, L, | B \rangle, Agenda)
    if Agenda is empty then return \langle A, O, L \rangle
    Remove some \langle Q, A_{need} \rangle from Agenda
    A_{add} = choose an action that can be ordered before A_{add}
        and has an effect that consistently unifies with Q (existing or new action)
    if no such A_{add} exists then return "no plan"
    Add A_{add} \stackrel{\vee}{\to} A_{need} to L, A_{add} < A_{need} to O, and codesignation constraints from
        unification to B
    if A_{add} is new then
        A = A \{A_{add}\} and Start < A_{add} < End to O
        Add noncodesignation preconds of A_{add} to B and logical ones to A_{genda}
    endif
   for every causal link A_p \xrightarrow{R} A_c threatened by some A_t do
        choose either to demote A_t or to promote A_t consistently
        if neither ordering is consistent then return "no plan"
    endfor
    LPOP(\langle A, O, L, \overline{B} \rangle, Agenda)
end LPOP
```

UCPOP

- Augments the basic STRIPS operator representation with
 - conditional effects
 - disjunctive preconditions
 - universal quantification